The Price of Altruism Read online

Page 14


  “Homeostasis” was the key. Coined in 1926 by the physiologist Walter B. Cannon, the term referred to the properties of self-control, regulation, and maintenance that ensured the stability of internal environments, like body temperature in mammals. Once again turning to analogy, Emerson replaced “internal environment” with “population,” fashioning homeostasis an ecological, not just a physiological, principle. “Just as the cell in the body functions for the benefit of the whole organism,” he wrote, “so does the individual organism become subordinate to the population.” Homeostasis was the solution to the conflict between part and whole; in the tug-of-war between the interest of the individual and the good of the group, the balance leading to stability was where the rope had to be fastened.28

  It had been a cool autumn day in September 1921 when Allee stepped into his new office at the University of Chicago. In the spirit of the Economics Department, the chair, Frank Lillie, had declared the subjects of investigation in the Department of Biology to furnish the basic scientific foundations for social control. Nature was humanity’s normative guide, the ecologist its healer. To help bring peace to the world he would plummet into her secret depths, rising with prescriptions. Allee’s heart was racing. Lake Forest was behind him. At the University of Chicago he’d be going straight to work in the service of civilization. His scientific experiments, he told his new colleagues, would be designed to throw light on the subject of war.29

  Everything revolved around animal aggregations.

  Bats aggregate in caves, mussels at their bed sites, prairie chickens at their booming grounds, iguanas on rocks to stay warm. Countless examples existed in nature of individuals clumping up in groups. Why did they do it? Wouldn’t such behavior put them all in grave danger, prey to a ruthless lucky predator, or otherwise doomed to an ill-fated turn of the environment? Dozens of studies showed not only that aggregating was dangerous but also that it led to stunted growth, low rates of reproduction, weak off spring, even unexplained death. If individual struggle for existence was Nature’s avenue, why would a mussel seek out friends with whom to consort?30

  The only possible answer was that groups offered individuals benefits after all. Allee began looking for them in his beloved isopods: Placing ten groups of the creatures alongside ten solitary specimens, all of them on filter paper, he was able to show that the groups retained water much more successfully. Here was proof that cooperative aggregation helps isopods deal with dry environments where retention of water is crucial.

  Next he turned to starfish. When he put them in containers with no eelgrass, immediately they clumped together into groups; when he planted eelgrass, the groups disbanded. Was this not proof enough that assembly provides protection in the absence of natural cover? Sea urchins, too, demonstrated how beneficial group life could be: The more fertilized eggs present in one area, the faster did they all divide and develop, becoming free-swimming larvae at significantly accelerated speeds. Life in groups held enormous benefits for individuals.

  Allee admitted that above certain numbers aggregations became dangerous, but as long as these numbers weren’t reached, aggregations conferred benefits on every and all. “Stranger” mussels came together because it was good for them. Nature had appointed cooperation her chief executor.31

  Neither tainted with German Darwinism nor plagued with biological determinism, aggregations were about unrelated animals cooperating to adjust to their surroundings; evolution and genetics were beside the point. But if the simplest of creatures were continually aiding each other, if cooperation was the rule of the sea cucumber and urchin, then surely there was a lesson to be learned by humans.

  Animal communities and human communities, after all, were part of the very same developmental process: individuals reacting to their environments by coming together, slowly learning to tolerate one another, gaining attractions to one another, then acting in coordination, then finally cooperating. So universal was this succession that for Allee it became a part of the very definition of life. Living beings, he wrote, all reproduce their kind, and all are continually adjusting to their environment. But a creature had also to show “at least the forerunners of cooperation” without this it wouldn’t be counted as living.32

  Finally, biology and Quakerism had united. Even though they knew better in their gut, early Friends could not counteract the claims of hard-boiled militarists; “they had no proof,” Allee wrote, “of the correctness of their position on this fundamental point.” Now things had changed. “There is abundant evidence from modern science that the centuries old Quaker attitude to war is correct.” Those who believed that science lends support to the present war system in settling international disagreements were relying on a false, outmoded phase of the biological understanding of the nature of life. Far from being smothered by competition, cooperation was possible precisely because the individual was important. It was through his seeking out of others that all the goodness in the world was born.

  Allee had melded politics, faith, and science into a comprehensive philosophy, good for planarians, insects, and humans. The social Darwinists were wrong because Huxley was wrong; it was Kropotkin who got it right. And, he added with a crack of home-grown Indiana pride, “It is to our glory that we Quakers attempted at all times to substitute cooperation for struggle.”33

  Then came World War II.

  Back in Princeton, von Neumann was as usual. He was not convinced by Quaker biology, nor, for that matter, by the view of human nature advanced by the advocates of the welfare state. Joining forces with Oskar Morgenstern, a tall, imposing Viennese émigré, he produced a twelve-hundred-page formula-filled tome, Theory of Games and Economic Behavior, to cover all eventualities. “Economists simply don’t know what science means,” Morgenstern, who claimed to be the grandson of Frederick III of Germany, wrote in his diary in 1942. “I am more and more of the opinion that Keynes is a scientific charlatan, and his followers not even that.”34 Morgenstern and von Neumann would change things. “We hope to establish satisfactorily,” the authors wrote, “that the typical problems of economic behavior become strictly identical with the mathematical notions of suitable games of strategy.”35

  As surely as tic-tac-toe, economics demanded precise strategy. When von Neumann would travel from Princeton to visit the Cowles Commission for Research in Economics at the University of Chicago, all the professors lined up like children to present him with problems they couldn’t solve.36 There was a buzz when he walked in, briskly, as was his fashion. But this was greater, people whispered, than mere economics: Von Neumann was the first man to crack the code of human behavior.37

  From Sewall Wright, Emerson had learned that natural selection acted not just on individuals but also on populations; mathematically speaking, “group selection” was possible. Wright’s math was complicated and its implications counterintuitive: Sometimes what was bad for the individual could actually be good for the group. Once again Emerson turned to analogy. In the Kaibab forest of Arizona, pumas were known to prey on deer. At the individual level the competition between every puma and every deer was a ruthless struggle for survival: Either a puma killed or starved, either a deer escaped or was eaten. But at a higher level pumas were actually regulating the deer population; when man hunted too many pumas, deer numbers quickly got out of control, and this was bad for everyone. If natural selection could “see” populations, choosing more successful ones for a given environment over others, evolution could flip intuition on its head: Competition could be considered beneficial, even cooperative. It all depended on the perspective.38

  And, of course, on homeostasis. Only homeostasis had allowed organisms, aggregated in groups, to take control of their lives in face of hostile environments. It was homeostasis that led termites to triumph and the Kaibab forest to flourish and grow. The more homeostasis, the more evolution moved away from conflict and competition. In “The Biological Basis of Social Cooperation,” Emerson offered his prescription: If the probability of survival of
the population depended on the degree to which individuals had adjusted themselves to one another and to the environment, then a little bit of sacrifice on the part of individuals was not all that much to ask for. The motto was “United we stand, divided we fall” if individual freedom threatened group stability, in the interest of “peace, well-being and progress” it would have to be carefully controlled.39

  George Gaylord Simpson was having none of it. Recently the goateed, pointy-eared paleontologist had been measuring his walks across Harvard Yard in political teaspoons: There was the landing on Normandy, the march on Berlin, the disintegration of the Nazis. Finally the Third Reich had been felled. But what was this pabulum coming out of Chicago? Hitler was dead in his bunker, and one Hitler had been enough. “The evolutionary analogy suggests,” he wrote,

  that the epiorganism will and should evolve in the direction of greater integration (i.e. less individual freedom and responsibility), and that its units (i.e. you and I) should become more specialized (with less scope for activity and change), more interdependent (less self-reliant), and more a part of the whole state (less individual)…. Then the biologist finds himself face to face with the fact that this is a totalitarian idea.40

  The “aggregation ethics” of these Chicago men was all the same: the “superorganism,” group selection, social control. It all just sounded too eerily familiar. For him groups were nothing more than a collectivity of individuals; they had no life of their own. It was the individual who was the fundamental unit of selection, not the group. The individual had motored all that was good and noble in evolution—intelligence, knowledge, and of course responsibility. Emerson believed that nature should be mankind’s moral beacon, and Simpson concurred: Ethics needed to be naturalized. Still, the Chicago man thought stability could be bought only at the price of constraints on individual freedom; for Simpson freedom was the cornerstone of democracy.41

  Difficult questions lingered. What if democracy wasn’t the best system, after all? What if totalitarian regimes maintained “homeostasis” more effectively? Fascism had led to destruction and been defeated. But could man compete in ways that were socially cooperative? Kropotkin and Huxley had sparred over the true nature of mankind. In the absence of a clear verdict, was it safe to abandon society to the ideal of individual freedom?

  Emerson leaned back in his chair, unperturbed. Now that the war was over, it was time to return to the wiser ways of nature, where a hopeful balance had been born. “The issue is clear,” he declared just a few months after Nagasaki. “It is cooperation or vaporization. It is a struggle for existence by means of the cooperation of all mankind, or extinction through unnatural destructive competition between individuals, classes, races and nations already incorporated into a larger interdependent whole.” His conviction resounded through the halls of the Department of Biology at Chicago like the din of a sea of termites marching up a woodland hill.42

  Over in the Met Lab, bending over uranium, the young George Price remained completely oblivious.

  Milton Friedman, Viner’s former trembling student, arrived back at the University of Chicago in 1946, just as George was leaving.

  During the war he had worked on tax policy at the Treasury Department, and emerged with a one-track mind. “Everything reminds Milton Friedman of the money supply,” economist Robert Solow complained. “Everything reminds me of sex, but I try to keep it out of my papers.” Still, Friedman was formidable. Everyone loves to argue with Milton, his Chicago colleague George Schultz used to say, especially when he isn’t there.43 He had a winning smile, a balding head, and oversize glasses. The nineteenth-century liberal regarded an extension of freedom as the best way to promote welfare and equality but nowadays a liberal was someone who saw welfare and equality as either prerequisites of freedom or its alternatives. Friedman was on a crusade: He was going to reclaim the mantle of classical liberalism.

  It wouldn’t be easy. Memories of the Great Depression and of war still lingered, and men looked to government for answers. Keynes was a hero. When Friedman published Capitalism and Freedom more than a decade and a half after World War II, neither the New York Times, Chicago Tribune, Herald Tribune, Time nor Newsweek even reviewed it.44 Still, as John Stuart Mill’s On Liberty had been for the nineteenth century, so would Friedman’s book become for the twentieth: a manifesto on freedom. The problem, just as for Allee, was one of integration. Literally millions of people were involved in providing one another with their daily bread, let alone their yearly automobiles. How could such interdependence be reconciled with individual freedom?

  In Russia the solution had been to concentrate economic power and political power in the very same hands. To Friedman this spelled catastrophe. All forms of collectivism necessarily lead to tyranny; economically and politically speaking a centralized economy was “the road to serfdom.”45 On the other hand, viewed as a means to the end of political freedom, the economy could be made to disperse power and do away with coercion. The key was for economic power and political power to be made separate so that they could off set each other, and the best way to do that was to free markets and encourage private enterprise exchange. Adam Smith had been right all along: The Invisible Hand born of individual self-seeking was the key to collective prosperity.

  Friedman would have loved to be an anarchist, like Kropotkin. Unfortunately he was all too well aware that individual freedoms often collide. “My freedom to move my fist,” the Supreme Court Justice William O. Douglas had put it, “must be limited by the proximity of your chin.”46 Government was necessary to provide a means to modify and mediate the rules of the game, and to punish anyone who would break them. Still, the hand of intervention had to be circumscribed as much as possible, just as Kropotkin had wanted. Their reasons for agreement were diametrically opposed: The Russian prince thought creatures were naturally cooperative and therefore needed neither coercion nor direction. The son of Russian immigrants, on the other hand, thought men were naturally competitive and that competition always leads to the best results. It was the Invisible Hand of the market, after all, that would safeguard welfare and equality. More fundamentally, it would protect mankind’s most precious treasure: freedom, that “rare and delicate plant.”47

  Back in the Zoology Department, Allee was breathing in the winds of change. He had always argued that cooperation was all about the individual: the individual adjusting to its environment, the individual adjusting to other organisms, the individual becoming a part of the group. It was physiology that drove things, the challenge of reacting to the environment. Huxley had taken the Darwinian struggle for existence to be nothing but a bloody war. But Darwin was softer: “A plant on the edge of a desert,” he had written, “is said to struggle for life against the drought.” Like Kropotkin, Allee trained his gaze there: to where the chronicle of nature bespoke organisms coming together to fight the elements to survive, not of a ruthless bellum omnium contra omnes. Cooperation was the happy result of organisms reacting to things like the chemistry of gases and the physics of camouflage.

  Down the hall, though, Emerson had gotten to him. Far from simply being about individual physiology, aggregation was a problem in population biology. Perhaps it was the group, after all, which counted more than the individual. Perhaps a starfish aggregated not simply to adjust to a lack of cover but because natural selection favored groups that clumped together over those that didn’t. Signs of paralysis had appeared in Allee’s legs back in 1930, and operations were performed to remove the growth. In 1938 a third operation had left his legs paralyzed. Now in a wheelchair and more dependent than ever, he wondered about the “superorganism” and the meaning of integration of the individual with the whole.48

  Emerson had argued that the individual was to the population as the cell was to the body. But if integration was to be studied properly, Allee thought, analogies would not suffice. If populations had their own unique traits, if the “superorganism” really was alive, he wanted to know how it worked. Chickens would pro
vide him with answers.

  As with many social animals, chicken life revolved around a hierarchy: Low-ranking hens lost a great proportion of their fights to higher-ranking ones, all the way up to the dominant hen at the very top.49 Allee knew that dominant hens laid more eggs than subordinates. This made it look as if selection were simply working on individuals: the stronger and more aggressive gaining a larger representation in future generations. If that were true, integration would be meaningless. Just as Simpson had argued, groups would be collections of individuals and nothing more.

  Impressed by Wright’s group-selection equations, he searched for a different explanation and together with a student soon made an encouraging discovery: Socially unstable flocks ate less, were scrawnier, laid fewer eggs, and had smaller combs than flocks where hierarchy was well established. Not only that: Once dominance-subordination relationships were stable, overall aggression dropped dramatically. Hierarchy was a group property, after all, a wise and benevolent integrating mechanism. The road to Mount Harmony traveled through the Lowlands of Competition.50

  It was a satisfying solution but it left Allee cold. Competition, after all, wasn’t supposed to be part of the natural equation. And yet here, and in the “higher” vertebrates of all creatures, it seemed a cardinal ingredient for survival. What would the Friends think of that?

  Just two months before Hiroshima and Nagasaki, in June 1945, Allee had made the problem clear in an article in the New Republic. Not only was competition a part of the game, it necessarily would lead to instability and bloodshed. “Sooner or later,” he wrote,